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When a plate is penetrated by a star-shaped missile [i, 2], pierced holes of exotic 
shape are formed. The hole either reproduces the edge of the missile or circumscribes it. 
The angular points in the missile correspond either to rounded parts in the hole or to cracks 
emerging at the edge of it. 

To simplify the treatment, we examined the first basic topic in the theory of elasticity 
[3] in relation to a star-shaped hole and missile, which corresponds to the real physical 
picture [4]. 

Here we consider cases where the star-shaped hole has a curvilinear boundary. The con- 
tour curves enclosing the boundary have common tangents at the ends of the rays, i.e., they 
degenerate into sections. We derived the dependence of the stress-intensity coefficient for 
the ends of the sections on the number of rays and the ratio of the maximum radius in the 
star to the minimum. The behavior of a sufficiently long crack at the end of a ray is 
examined by reference to a plane with an angular slot and the line of section continuing it. 
We ,consider a star with rounded corners, and we derive the stress-concentration coefficient 
for those corners in relation to the above parameters and the radius of curvature. 

i. The stress function can be put as the following contour integral [5] as a solution 
to the biharmonic equation: 

U ~ y ) = ~  [Pl(X' y, t) f l ( t )v -p2(x ,  y, t) f 2 ( t ) ] l n r  2(x,  g, t) dt, 

L 
P i - -  a(l)[x - -  x(t)] ~- b(t)[g - -  y(t)], p~ . . . .  b(t)[x - -  x(t)]-~ a(t)[g - -  g(t)], 

r 2 2 2 
- -  Pl -I- 9 2 '  

(i.i) 

where x(t), y(t) is a point on the contour L corresponding to a given value of the param- 
eter t, and a(t), b(t) represent unit vector for the tangent to L at that point. We 
introduce additional terms that incorporate the homogeneous state of stress in the plane and 
derive the stress function in the form 

U(x, ~) = UO(x, y) -~ 0,5(v~y~ + %xD. (1.2) 
n--I 

If L is formed by n smooth curves, L= U L k , then 

n--I 

u 0 
(x, y ) ~  Z 2 ~  ~ (Plh/lh -~ P2hf2h)in r~dt. 

h=O Lh 
r  

H e r e  t h e  k e r n e l s  P l k ,  P2k  a r e  e x p r e s s e d  i n  t e r m s  o f  t h e  f u n c t i o n s  X k ( t ) ,  y k ( t )  d e f i n i n g  
in accordance with (I.i). With cyclic symmetry in the disposition of the L k curves and in 

the distribution of the external forces, we have fjk(t) = f.(t),j j = i, 2, k = 0, i, .... n- 

i. 

The normal and tangential stresses in the curvilinear coordinate system 6, ~ are defined 

by 

~ == ~x sin~ ~ ~" o-y co5 ~ ~ ~ ~rxy sin 2~z, (1.3) 

.r~n = O.5(cry -- (Yx) sin 2~z -~- ~xy cos 2a, 
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where o = aaU/~ya; o = SaU/axa; T = --~2U/~x~y, and ~ is the angle between the tangent to 
x y xy 

the line ~ = const in the direction of increase in t and the x axis. On L 

exp ( 2 i a ) =  c + is = [x'(t) q - i y ' ( t ) l / [ x ' ( t )  - - i y ' ( t ) ] .  

We a p p l y  t o  ( 1 , 2 )  b o u n d a r y  c o n d i t i o n s  on  L i n  a c c o r d a n c e  w i t h  ( 1 . 3 ) :  

~ = P3 t ) '  ~ n  = p~(t), 

w h i c h  g i v e s  u s  t h e  s i n g u l a r  i n t e g r a l  e q u a t i o n  

SV(~ , x) 1(~) & = p(t), (1.4) %- 

L 

where p(t) is the external-force vector, f(t) is the unknown-function vector, and G(t, T) is 
a square matrix of order 2n whose diagonal elements contain a singularity of Cauehy type. 

We consider a plane having a hole in the form of a curvilinear star, whose contour is 

tangential to the rays ~= ~k= 2k~/n,k= 0,1,,.., n--i and is defined by the equation r = (~) 

given in polar coordinates ~ and r. By virtue of the cyclic symmetry, we put r(cp q-2~/n)= 

r((p), p((~ + 2a/n)  = p(~)  . 

For r(--~)= r(~), p1(--q0)= pi(T), P2(T)= 0 , vector equation (i.4) leads to the singular integral 

equation 

2gin G O (t, ~) ( 1 . 5 )  t__ /~ (~) - -  § ~ (t, T) d-~ = p~ (t) 

0 h ~ l  

f o r  t h e  u n i q u e  u n k n o w n  f u n c t i o n  f~  ( t ) ,  w h e r e  

72 2 q (t, T) = (%v~ + b~v0/J) .  + (%v~ - b~L:~) [2~v,y~ - - .  ( . ~  --  ~ ~)]/D~, 

xh(t  ) = r(t) cos (q)h - -  t), yh(t) = r(t~ sin (q0 h - -  t), 
t 

D~ = U~ + V~, % = x h (~), b~ = y~ (~), 

U k = [ x o ( t ) -  xh('~)Dhgt, "0, V~ = [Uo(t ) -  Uh('c)]'eh(t, "0, 

v0(t, %) = i,  ?h(t, ~):= (t - -T) -1, k = 1 . . . . .  n - -  1. 

To (1.5) we add the condition that the displacements are unique2 

• /(t) dt =0. (1.6) 

L 

The method of 

equations: 

[6] is used to reduce (1.5) and (1.6) to a system of linear algebraic 

N (1.7) 
.,~ A~/j = P2 

i = l  

For this purpose we put 

t = - 7  (i + cos o)), "~ = ,-7 (i + cos 0), 

N 
/ (x) --  1 ~ (__ t) i+: t / j  cos NO sin 0j 

N cos 0 cos 0 - -  cos 0j 

E x p r e s s i o n s  h a v e  b e e n  g i v e n  [6 ]  f o r  t h e  c o e f f i c i e n t s  A i j  i n  ( 1 . 7 ) .  

The sLress distribution near the end r = ro of the ray ~ = ~k takes the form o 0 = K(r -- 

ro) -~ apart from infinitely small quantities~ where the parameter K, the stress-intensity 

coefficient, is proportional to the following [5] 
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N 
l Oj 

• = , ~  ~ _ ~ ( - - l ) J f j c [ , g . - ~ .  
j= l  

(1.8) 

In the calculations we took N as 17 and 21, with the equation for the contour 

and the area of the star 

S = -6-  (I0 --  3~) r i -i- 4 q  -k (3= --  ~) q r  2 -- =, 

where rl is the minimum radius and r2 is the maximum one. We varied the parameters n and 

g = rl/r2, 

The calculations show (Fig. I) that ~ takes its largest values for ~ > 2.25 with n = i0, 

for 1.75 < s < 2.25 with n = 9, and for 1.5 < s < 1.75 with n = 8. The differences in these 

values are slight. 

2. We used the integral representation for the general solution to (I.i) to examine a 

plane with an angular slot and a crack at its vertex directed along the bisector of the 
angle. The contour L is formed by the right-hand boundary of the angle L~{x = at, y = bt, 
0 < t < ~} , the left-hand boundary L={x = at, y =--bt, -~o < t < 0} , and the line of sec- 
tion L3{x = O, y = t, --l < t < 0}, where a = cos ~, b = sin ~, and ~ is the inclination of 

the right boundary to the x axis. 

We assume that the external forces are applied symmetrically with respect to the axis of 

the line of section to get a system of singular integral equations 

, I~ .f~/~)d~ s / f (2.1) 

Li j = l  Lj 

The kernels G.. are not written out. If La is absent and the variation in t is restricted, 
13 

(2.1) takes the form obtained on examining two cracks at an angle to one another [7]. In 

place of (1.6) we add the condition f~ = 0, which provides for bounded stresses at the 
3 

vertex of the cut angle. Equation (2.1) was also solved numerically by the method of [6]. 
In the calculations it was assumed that the external forces were constant, orthogonal to 

the axis of the line of section, and act for t < I, i.e., 

pl - b2h(t), p2 . . . .  abh(t), P3 ~ 1, 

where h(t) = 1 for t ~ 1 and h(t) = 0 for t > i. 

Figures 2 and 3 show calculations on the stress intensity coefficient at the end of the 

crack K = • where • is defined by (1.8). Curves 1-5 (Fig. 2) correspond to angles in 

the cutout of 150, 120, 90, 60, and 30 ~ . K increases monotonically with the crack length. 

The variation in K as the angle of the cutout decreases (Fig. 3) is not monotone: near 
~ 35-45 ~ (cutout angle about 90~ the curves have maxima, i.e., the plane is most damaged. 

3. We estimate the stresses when the corners in the star-shaped hole and the missile 

are rounded, using the method of [3]. 

Consider a star-shaped figure in the plane of the complex variable z bounded by a kinked 

line with its vertices at the points 

k \zh ~ =:: ' 

k = O, t, 2 , . . . ,  n - - 1 ,  

w i t h  t h e  n u m b e r  o f  r a y s  f o r  t h e  s t a r  n = 2 ,  3 ,  . . . .  We t a k e  t h e  a r e a  o f  t h e  s t a r  a s  ~p~  
( p o  = c o n s t )  t o  g e t  a r e l a t i o n  b e t w e e n  t h e  p a r a m e t e r s  

2 ( ~ ) $  ~ n }  2 p, 
= - - ~ a r c c t g  - ~  s i n - 2 -  T - c t g - ~ -  ~ -  ~ n '  ~ =  r 
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TABLE 1 

M 

n=3 
n~6 

20 .I 40 

0,863 0,423 0,912 
0,9t4 0,16t 0,949 

p* 

0,196 
0,094 

60 

u-- p* 

0,932 ] 0,127 
0,95t 0,069 

R = rsin sin-~ 2"" 

We d e n o t e  t h e  r e g i o n  w i t h i n  t h e  s t a r  by  D + and  t h a t  o u t s i d e  i t  by  D- ,  w h i l e  t h e  region 
Z g 

in the ~ plane within unit circle {I~[ = i} is denoted by D + and outside it by D-. The con- 

formal mapping of D + into D + has the form of a Christoffel-Schwartz integral: 
z 

= ~+ (~) = c~ j' (t + ~n)l-~ (i - -  ~n)~-I  d L, ~ = pC%" 
o 

+ 
where co is derived from the condition m+(l) = R. Similarly, 

= ~- (~1 = c 7 ~ (i + g") ~-~(i - C9 I-~ eL + R, 
0 

a)-(r exp(ni/n)) = exp(r~i/n) 

perform the conformal mapping of D- into D-. 
z 
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Let the normal force ~ = p(t) be given at the edge of the star. The first boundary-value 
n 

p r o b l e m  f o r  t h e  K o l o s o v - - N u s k h e l i s h v i l i  f u n c t i o n s  ~ * ( z )  ~* (z )  i n  t h e  r e g i o n s  D + ( i n t e r n a l  p r o b -  
' N 

lem) and D- (external problem) is written as 
Z 

t 

R 

or after conformal transformation 

o -+ ( ,~)  , 
(p• (o) § ~ r 1 7 7  ((~) + ,_+_ ((~) - -  ~_: q (~o -~ (~))exp ( -  ~/2),  

(p(~) = ~*(~o, (0 ) ,  r  = ~(o)(~)). 

The method of solving (3.1) approximately is as follows. The expansions of ~+(5) 

region of r = 0 and of m (~) in the region r = ~ take the form 

(3 .1 )  

in the 

where 

oo  

h=O 

(3 .2)  

c~ ~ a§ 
j = o  

k - ~  b + = b h + _ 1 2 - - k - - I ~  a f _ k + ~ , - - 2  b;=~F,_ ~,,~: 

By virtue of this, we seek the functions ~(~), ~(~) in the form 

r (~) = --+ pexp (-- o~ni/2) ~ (~h~ 1-i-~n, ( 3 . 3 )  
k=O 

oo 

~• (~) - • p exp ( -  0r ~ !~h~-1• I~. 
h~O 

We substitute (3.2) and (3.3) into (3.1) and compare the coefficients to identical powers 
of 5 to get a system of algebraic equations for the coefficients a k and B k. A finite number of 

terms was retained in the calculations on the expansions of (3.2) and (3.3), and this assump- 
tion, which enables one to reduce the problem to a finite system of equations and to derive 
finite values for the stress-concentration coefficient at the nodal points, is equivalent to 
rounding the corners at the vertices of the star. The rounding is characterized by the 
radius of curvature. 

One can evaluate the effects of the number of rays and the elongation of them on the 
state of stress in the internal or external region by means of the stress-concentration 

coefficient r = 4 Re r -- p as calculated at the point (p = i, 0 = n/n) in the first 

497 



case and at the point (p = I, 8 = 0) in the second. In the calculations, n was varied from 
2 to 50 and ~ from 0.6 to 15, this being the ratio of the maximum radius of the star to the 
minimum. 

- ~ + + 
Figures 4 and 5 give graphs for • = oo/p and • = oe/p as E varies for various n. As 

increases for each value of n, • increases monotonically. However, • increases if e < 1.6 

for a given s and as n increases. For example, with E = i.i, • takes its least value when 
+ 

n = 7 (~ = 0.68, B = 0.96) and its largest when n = 2 (~ = 1/3, B = 4/3). If e is positive, 

the missile has the form of a convex figure. 

One can optimize the form of the missile subject to constraints imposed by strength re- 
quirements on • + by choosing n and s such that ~ - takes its maximum value. A multirayed form 
is preferable for a high-strength missile. 

The effects of the rounding at the vertex of a ray on the stress-concentration coefficient 
for the star-shaped hole are given in the table when one takes a finite number of terms in 
(3.2) and (3.3). We give the values of • - and the radius of curvature p* at the vertex of a 
rounded corner for s = 1.6 and n = 3 and 6 on retaining M = 20, 40, or 60 terms. 

A similar picture is observed for other values of n and ~. 

The experimental studies on the strength characteristics of star-shaped missiles and 
holes [i, 8] lead us to recommend results obtained for curvilinear stars with sharp corners 
~nd corners with cracks as in sections i and 2 on impact with brittle materials. The results 
of section 3 in that case may be incorrect. Their use is desirable for convex polyhedra and 
stars with blunt corners. 

We are indebted to V. G. Dulov for pointing out the importance of this topic. 
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